عرض مشاركة مفردة
  #6  
قديم 16/11/2005, 09:10 PM
صورة لـ shadow
shadow
هــادف
 
إرسال رسالة عبر MSN إلى shadow إرسال رسالة عبر Yahoo إلى shadow
يتبع ...

This discrepancy does not seem to have shaken his faith in the belief that gravity extended as far as the moon and varied inversely as the square of the distance; but from Whiston's notes of a conversation with Newton, it would seem that Newton inferred that some other force - probably Descartes's vortices - acted on the moon as well as gravity. This statement is confirmed by Pemberton's account of the investigation. It seems, moreover, that Newton already believed firmly in the principle of universal gravitation, that is, that every particle of matter attracts every other particle, and suspected that the attraction varied as the product of their masses and inversely as the square of the distance between them; but it is certain that he did not then know what the attraction of a spherical mass on any external point would be, and did not think it likely that a particle would be attracted by the earth as if the latter were concentrated into a single particle at its centre.

On his return to Cambridge in 1667 Newton was elected to a fellowship at his college, and permanently took up his residence there. In the early part of 1669, or perhaps in 1668, he revised Barrow's lectures for him. The end of the fourteenth lecture is known to have been written by Newton, but how much of the rest is due to his suggestions cannot now be determined. As soon as this was finished he was asked by Barrow and Collins to edit and add notes to a translation of Kinckhuysen's Algebra; he consented to do this, but on condition that his name should not appear in the matter. In 1670 he also began a systematic exposition of his analysis by infinite series, the object of which was to express the ordinate of a curve in an infinite algebraical series every term of which can be integrated by Wallis's rule; his results on this subject had been communicated to Barrow, Collins, and others in 1669. This was never finished: the fragment was published in 1711, but the substance of it had been printed as an appendix to the Optics in 1704. These works were only the fruit of Newton's leisure, most of his time during these two years being given up to optical researches.

In October 1669, Barrow resigned the Lucasian chair in favour of Newton. During his tenure of the professorship, it was Newton's practice to lecture publicly once a week, for from half-an-hour to an hour at a time, in one term of each year, probably dictating his lectures as rapidly as they could be taken down; and in the week following the lecture to devote four hours to appointments which he gave to students who wished to come to his rooms to discuss the results of the previous lecture. He never repeated a course, which usually consisted of nine or ten lectures, and generally the lectures of one course began from the point at which the preceding course had ended. The manuscripts of his lectures for seventeen out of the first eighteen years of his tenure are extant.

When first appointed Newton chose optics for the subject of his lectures and researches, and before the end of 1669 he had worked out the details of his discovery of the decomposition of a ray of white light into rays of different colours by means of a prism. The complete explanation of the theory of the rainbow followed from this discovery. These discoveries formed the subject-matter of the lectures which he delivered as Lucasian professor in the years 1669, 1670 and 1671. The chief new results were embodied in a paper communicated to the Royal Society in February, 1672, and subsequently published in the Philosophical Transactions. The manuscript of his original lectures was printed in 1729 under the title Lectiones Opticae. This work is divided into two books, the first of which contains four sections and the second five. The first section of the first book deals with the decomposition of solar light by a prism in consequence of the unequal refrangibility of the rays that compose it, and a description of his experiments is added. The second section contains an account of the method which Newton invented for determining the coefficients of refraction of different bodies. This is done by making a ray pass through a prism of the material so that the deviation is a minimum; and he proves that, if the angle of the prism be i and the deviation of the ray be , the refractive index will be sin ½ (i + ) cosec ½ i. The third section is on refractions at plane surfaces; he here shews that if a ray pass through a prism with minimum deviation, the angle of incidence is equal to the angle of emergence; most of this section is devoted to geometrical solutions of different problems. The fourth section contains a discussion of refractions at curved surfaces. The second book treats of his theory of colours and of the rainbow.

By a curious chapter of accidents Newton failed to correct the chromatic aberration of two colours by means of a couple of prisms. He therefore abandoned the hope of making a refracting telescope which should be achromatic, and instead designed a reflecting telescope, probably on the modal of a small one which he had made in 1668. The form he used is that still known by his name; the idea of it was naturally suggested by Gregory's telescope. In 1672 he invented a reflecting microscope, and some years later he invented the sextant which was rediscovered by J. Hadley in 1731.

His professorial lectures from 1673 to 1683 were on algebra and the theory of equations, and are described below; but much of his time during these years was occupied with other investigations, and I may remark that throughout his life Newton must have devoted at least as much attention to chemistry and theology as to mathematics, though his conclusions are not of sufficient interest to require mention here. His theory of colours and his deductions from his optical experiments were at first attacked with considerable vehemence. The correspondence which this entailed on Newton occupied nearly all his leisure in the years 1672 to 1675, and proved extremely distasteful to him. Writing on December 9, 1675, he says, ``I was so persecuted with discussions arising out of my theory of light, that I blamed my own imprudence for parting with so substantial a blessing as my quiet to run after a shadow.'' Again, on November 18, 1676, he observes, ``I see I have made myself a slave to philosophy; but if I get rid of Mr. Linus's business, I will resolutely bid adieu to it eternally, excepting what I do for my private satisfaction, or leave to come out after me; for I see a man must either resolve to put out nothing new, or to become a slave to defend it.'' The unreasonable dislike to have his conclusions doubted or to be involved in any correspondence about them was a prominent trait in Newton's character.



Newton was deeply interested in the question as to how the effects of light were really produced, and by the end of 1675 he had worked out the corpuscular or emission theory, and had shewn how it would account for all the various phenomena of geometrical optics, such as reflexion, refraction, colours, diffraction, etc. To do this, however, he was obliged to add a somewhat artificial rider, that his corpuscules had alternating fits of easy reflexion and easy refraction communicated to them by an ether which filled space. The theory is now known to be untenable, but it should be noted that Newton enunciated it as a hypothesis from which certain results would follow: it would seem that he believed that wave theory to be intrinsically more probable, but it was the difficulty of explaining diffraction on that theory that led him to suggest another hypothesis.

Newton's corpuscular theory was expounded in memoirs communicated to the Royal Society in December 1675, which are substantially reproduced in his Optics, published in 1704. In the latter work he dealt in detail with his theory of fits of easy reflexion and transmission, and the colours of thin plates, to which he added an explanation of the colours of thick plates [bk. II, part 4] and observations on the inflexion of light [bk. III].



من مواضيعي :
الرد باقتباس